Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
An. acad. bras. ciênc ; 89(3): 1555-1564, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-886762

ABSTRACT

ABSTRACT Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.


Subject(s)
Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Maytenus/chemistry , Dengue Virus/drug effects , Pentacyclic Triterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Antidiarrheals/pharmacology , Antiviral Agents/isolation & purification , Cell Line , Maytenus/classification , Pentacyclic Triterpenes/isolation & purification , Anti-Bacterial Agents/isolation & purification , Antidiarrheals/isolation & purification
2.
Rev. bras. farmacogn ; 27(4): 533-540, July-Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-898682

ABSTRACT

ABSTRACT Uses of medicinal plants by people around the world significantly contribute and guide biologically active compounds research that can be useful in the combat against various diseases. Due to a great chemical and structural variety found in their vegetal structures it consolidates ethnopharmacology as an important science for the pharmaceutical section. Inserted in the diversity of medicinal plants, is the Maytenus genus, whose research has already revealed lots of isolated substances which are responsible for a great variety of biological activities, among which we cite analgesic and anti-inflammatory, for the treatment of inflammatory diseases such as rheumatoid arthritis, gastritis, ulcers and gastrointestinal disorders. The aim of this review article is to make a compendium of the Maytenus genus and its isolated chemical compounds, among them tingenone. The elucidation of its mechanism of action reveals promising sources for the development of new drugs specially targeted for the treatment of painful inflammatory diseases.

3.
Rev. bras. farmacogn ; 27(4): 471-474, July-Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-898698

ABSTRACT

ABSTRACT The phytochemical study of the extract leaves from Maytenus distichophylla Mart. and Salacia crassifolia (Mart. ex Schult.) G. Don, Celastraceae, resulted in the isolation of 3-oxofriedelane, 3β-hydroxyfriedelane, 3β,24-dihydroxyfriedelane, 3-oxo-28,29-dihydroxyfriedelane, two mixtures of pentacyclic triterpenes (α-amyrin with β-amyrin and 3β-stearyloxy-urs-12-ene with 3β-stearyloxy-olean-12-ene), 3β-palmityloxy-urs-12-ene, the steroid β-sitosterol and its glycosylated derivative β-glucosyl-β-sitosterol, tritriacontanoic acid and the natural polymer gutta percha. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts, the mixtures of triterpenes and the isolated constituents were subjected to in vitro acetylcholinesterase inhibitory evaluation. Acetylcholinesterase inhibitory effect was observed for crude chloroform extract leaves from M. distichophylla (100%) and S. crassifolia (97.93 ± 5.63%) and for the triterpenes 3β,24-dihydroxyfriedelane (99.05 ± 1.12%), 3-oxo-28,29-dihydroxyfriedelane (90.59 ± 3.76%) and 3β-palmityloxy-urs-12-ene (97.93 ± 1.47%). The percent inhibitions induced by these natural products were very similar to those produced by physostigmine (93.94 ± 2.10%) a standard acetylcholinesterase inhibitor. Therefore, these results open perspectives for the use of these species as source of compounds with similar physostigmine pharmacological effect.

SELECTION OF CITATIONS
SEARCH DETAIL